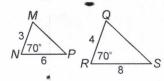

Similar Triangles

Target: Use proportions to find missing par

Identify Similar Triangles Here are three ways to show that two triangles are similar.

AA Similarity	Two angles of one triangle are congruent to two angles of another triangle.
SSS Similarity	The measures of the corresponding side lengths of two triangles are proportional.
SAS Similarity	The measures of two side lengths of one triangle are proportional to the measures of two corresponding side lengths of another triangle, and the included angles are congruent.

Example 1 Determine whether the triangles are similar.


$$\frac{AC}{DF} = \frac{6}{9} = \frac{2}{3}$$

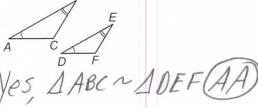
$$\frac{}{EF} = \frac{}{12} = \frac{}{3}$$

$$AB \qquad 10 \qquad 2$$

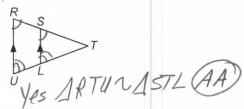
 $\triangle ABC \sim \triangle DEF$ by SSS Similarity.

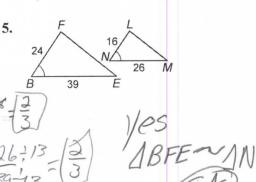
Example 2 Determine whether the triangles are similar.

$$\frac{3}{4} = \frac{6}{8}$$
, so $\frac{MN}{QR} = \frac{NP}{RS}$

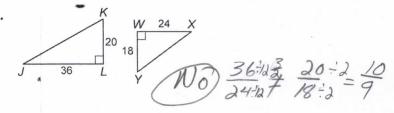

 $m \angle N = m \angle R$, so $\angle N \cong \angle R$.

 $\triangle NMP \sim \triangle RQS$ by SAS Similarity.

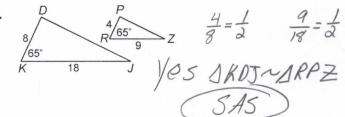

Exercises

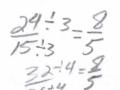

Determine whether the triangles are similar. If so, write a similarity statement. Explain your reasoning.

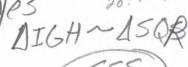
1.



3.

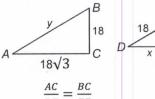



2.



4.

6.


Similar Triangles

Use Similar Triangles Similar triangles can be used to find measurements.

Example 1

 $\triangle ABC \sim \triangle DEF$. Find the

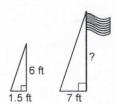
values of x and y.

$$\frac{AC}{DF} = \frac{BC}{EF}$$

$$\frac{18\sqrt{3}}{2} = \frac{18}{2}$$

$$x = 9$$

$$18x = 9(18\sqrt{3})$$

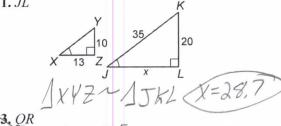

$$x = 9\sqrt{3}$$

$$\frac{AB}{DE} = \frac{BC}{EF}$$
y 18

$$\frac{y}{18} = \frac{18}{9}$$

$$9y = 324$$
$$y = 36$$

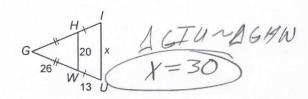
Example 2 A person 6 feet tall casts a 1.5-foot-long shadow at the same time that a flagpole casts a 7-foot-long shadow. How tall is the flagpole?

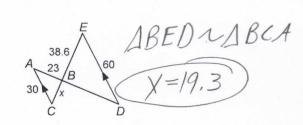


The Sun's rays form similar triangles. Using x for the height of the pole, $\frac{6}{x} = \frac{1.5}{7}$, so 1.5x = 42 and x = 28. The flagpole is 28 feet tall.

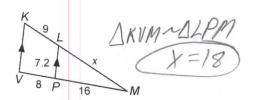
Exercise

ALGEBRA find each measure.

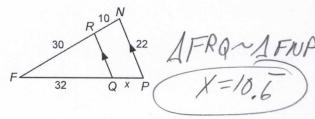

1. JL



 $36\sqrt{2}$


4. BC

2. IU



5. LM

6. *QP*

7. The heights of two vertical posts are 2 meters and 0.45 meter. When the shorter post casts a shadow that is 0.85 meter long, what is the length of the longer post's shadow to the nearest hundredth?